电子课本网 第112页

第112页

信息发布者:
D
-1
$​​\sqrt{5}​​或​​\sqrt{13}​​$
$解:原式​​=\frac {a+2-3}{(a+2)(a-2)}×\frac {a(a+2)}{a-1}​​$
$​​=\frac {a}{a-2}​​$
$当​​a=\sqrt{6}+2​​时$
$原式​​=\frac {\sqrt{6}+2}{\sqrt{6}+2-2}​​$
$​​=\frac {3+\sqrt{6}}{3}​​$
$解:​(1)​猜想,​\sqrt{2011}-\sqrt{2010}>\sqrt{2012}-\sqrt{2011}​$
$​\sqrt{2011}-\sqrt{2010}=\frac {(\sqrt{2011}-\sqrt{2010})(\sqrt{2011}+\sqrt{2010})}{\sqrt{2011}+\sqrt{2010}}=\frac 1{\sqrt{2011}+\sqrt{2010}}​$
$​\sqrt{2012}-\sqrt{2011}=\frac {(\sqrt{2012}-\sqrt{2011})(\sqrt{2012}+\sqrt{2011})}{\sqrt{2012}+\sqrt{2011}}=\frac 1{\sqrt{2012}+\sqrt{2011}}​$
$​∵\sqrt{2011}+\sqrt{2010}<\sqrt{2012}+\sqrt{2011}​$
$​∴\frac 1{\sqrt{2011}+\sqrt{2010}}>\frac 1{\sqrt{2012}+\sqrt{2011}},​即​\sqrt{2011}-\sqrt{2010}>\sqrt{2012}-\sqrt{2011}​$
$​(2)​由​(1)​可得$
$原式​​=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+....+10-\sqrt{99}​​$
$​=10-1​$
$​=9$