电子课本网 第29页

第29页

信息发布者:
​$ =(4x^2-1)(4x^2+1)$​
​$=16x^4-1$​
​$ =[(2m+3n)(3n-2m)]^2$​
​$=(9n^2-4\ \mathrm {m^2})^2$​
​$=81n^4-72\ \mathrm {m^2}n^2+16m^4$​
​$ =4x^2-y^2-4x^2+4xy-y^2$​
​$=4xy-2y^2$​
​$ =(x-y)^2-1^2$​
​$=x^2-2xy+y^2-1$​
解:​$Q=(\mathrm {m^2}+1-m)(\mathrm {m^2}+1+m)=(\mathrm {m^2}+1)^2-\mathrm {m^2}$​
​$=m^4+2\ \mathrm {m^2}+1-\mathrm {m^2}=m^4+\mathrm {m^2}+1$​
​$P=[(m+1)(m-1)]^2=[\mathrm {m^2}-1]^2=m^4-2\ \mathrm {m^2}+1$​
∵​$m≠0$​
∴​$\mathrm {m^2}>0$​
∴​$Q-P=m^4+\mathrm {m^2}+1-m^4+2\ \mathrm {m^2}-1=3\ \mathrm {m^2}>0$​
∴​$Q>P$​