解:$(1)$如图,直线$DE、$点$F $即为所求
$(2)$由题意可知,四边形$ABED$与四边形$CFED$关于直线$DE$对称
∴$∠DEB = ∠DEF$
∵$∠FEC = 48°,$且$∠DEB + ∠DEF = ∠FEC + 180°$
∴$2∠DEF = 48°+ 180°,$解得$∠DEF = 114°$
∴$∠DEC = ∠DEF - ∠FEC = 114° - 48° = 66°$
$(3)$由题意可知,$S_{\triangle BED}=S_{\triangle EDF}=4,$$S_{\triangle AED}=S_{\triangle EDC}$
设$\triangle BED$中边$BE$上的高为$h$
则$\frac {S_{\triangle BED}}{S_{\triangle EDC}}=\frac {\frac 12BE·h}{\frac 12EC·h}=\frac {BE}{EC}=\frac 25$
∵$S△{\triangle BED}=4,$∴$S_{\triangle EDC}=10$
∴$S△{\triangle AEC}=2S_{\triangle EDC}=20$
设$\triangle AEC$中边$EC$上的高为$h'$
∴$\frac {S_{\triangle AEC}}{S_{\triangle ABC}}=\frac {\frac 12EC·h'}{\frac 12BC·h'}=\frac {EC}{BC}$
∵$\frac {BE}{EC}=\frac 25,$则$\frac {EC}{BC}=\frac 5{2 + 5}=\frac 57$
∴$S_{\triangle ABC}=\frac 75 S_{\triangle AEC}=\frac 75×20 = 28$