解:根据题意,四个方程同时成立,所以有方程组$\begin{cases}x + y = 3\\x - y = 7\end{cases}$
两式相加得:$x + y + x - y = 3 + 7$
$2x = 10$
$x = 5$
把$x = 5$代入$x + y = 3$得:$5 + y = 3$
$y = 3 - 5$
$y = - 2$
将$x = 5,y = - 2$代入其余两个方程,得$\begin{cases}5a + 2b = 5\\5b + 4a = 1\end{cases}$
由$5a + 2b = 5$可得$b=\frac{5 - 5a}{2}$
将$b=\frac{5 - 5a}{2}$代入$5b + 4a = 1$得:
$5\times\frac{5 - 5a}{2}+ 4a = 1$
$\frac{25 - 25a}{2}+ 4a = 1$
$25 - 25a + 8a = 2$
$-17a = 2 - 25$
$-17a = - 23$
$a = \frac{23}{17}$
把$a = \frac{23}{17}$代入$b=\frac{5 - 5a}{2}$得:
$b=\frac{5 - 5\times\frac{23}{17}}{2}=\frac{85 - 115}{34}=-\frac{15}{17}$
所以$a=\frac{23}{17},b = -\frac{15}{17}$