电子课本网 第10页

第10页

信息发布者:
$12x^{4}-2x^{3}+6x^{2}$
$-16m^{4}n^{3}$
$22a^{2}$
4
8
​$±3$​
$a^{2}-ab + b^{2}$
625
​$ 解: (-a^2b^3-\frac {1}{3}ab+2bc)(-\frac {3}{4}a^2b) $​
​$=\frac {3}{4}a^4b^4+\frac {1}{4}a^3b^2-\frac {3}{2}a^2b^2c$​
解:$\begin{aligned}&(x + y)(x^{2}+y^{2})(x - y)(x^{4}+y^{4})\\=&[(x + y)(x - y)](x^{2}+y^{2})(x^{4}+y^{4})\\=&(x^{2}-y^{2})(x^{2}+y^{2})(x^{4}+y^{4})\\=&(x^{4}-y^{4})(x^{4}+y^{4})\\=&x^{8}-y^{8}\end{aligned}$
解:$\begin{aligned}&(a - 2b + 3)(a + 2b - 3)\\=&[a-(2b - 3)][a+(2b - 3)]\\=&a^{2}-(2b - 3)^{2}\\=&a^{2}-(4b^{2}-12b + 9)\\=&a^{2}-4b^{2}+12b - 9\end{aligned}$
$解:原式=3x^{2}-12-(3x^{2}+x-4)$
$=-x-8$
$解:原式=x^{2}+4x+4+4x^{2}-1-4x^{2}-4x=x^{2}+3$
$把x=-2代入原式=4+3=7$