电子课本网 第79页

第79页

信息发布者:
​$=(1+3+5+.….+15+17)+(\frac {1}{6}+ \frac {1}{12}+ \frac {1}{20}+ \frac {1}{72}+\frac {1}{90})$​
​$=81+(\frac {1}{2}-\frac {1}{3}+\frac {1}{3}-\frac {1}{4}+\frac {1}{4}-\frac {1}{5}+.….+\frac {1}{8}−\frac {1}{9}+\frac {1}{9}−\frac {1}{10})$​
​$=81+(\frac {1}{2}-\frac {1}{10})$​
​$=81+\frac {2}{5}$​
​$=81\frac {2}{5}$​
​$=1−\frac {1}{2}+1−\frac {1}{6}+1− \frac {1}{12} +.…. + 1-\frac {1}{90}$​
​$= 1 × 9−\frac {1}{2}+\frac {1}{6}+\frac {1}{12}+.….+\frac {1}{90})$​
​$=9−(1−\frac {1}{2}+\frac {1}{2}−\frac {1}{3}+\frac {1}{3}−\frac {1}{4}+...+\frac {1}{9}−\frac {1}{10})$​
​$=9−(1−\frac {1}{10})$​
​$=9−\frac {9}{10}$​
​$=8\frac {1}{10}$​
​$=(1+1+1+1+1+1+11)−(\frac {1}{2}+\frac {1}{4}+\frac {1}{8}$​
​$+\frac {1}{16}+\frac {1}{32}+\frac {1}{64}+\frac {1}{128})$​
​$=7−(1−\frac {1}{2}+\frac {1}{2}−\frac {1}{4}+\frac {1}{4}−\frac {1}{8}+\frac {1}{8}−\frac {1}{16}+\frac {1}{16}−\frac {1}{32}$​
​$+\frac {1}{32}−\frac {1}{64}+\frac {1}{64}−\frac {1}{128})$​
​$=7−(1−\frac {1}{128})$​
​$=7−\frac {127}{128}$​
​$=6\frac {1}{128}$​

$2$
$3$
$9$
$60$
$30$
$20$
答:去掉$\frac{1}{12}$和$\frac{1}{15}$这两个分数,才能使余下的分数之和为1。
答:那么△与○的和是3。