$=(1+1+1+1+1+1+11)−(\frac {1}{2}+\frac {1}{4}+\frac {1}{8}$
$+\frac {1}{16}+\frac {1}{32}+\frac {1}{64}+\frac {1}{128})$
$=7−(1−\frac {1}{2}+\frac {1}{2}−\frac {1}{4}+\frac {1}{4}−\frac {1}{8}+\frac {1}{8}−\frac {1}{16}+\frac {1}{16}−\frac {1}{32}$
$+\frac {1}{32}−\frac {1}{64}+\frac {1}{64}−\frac {1}{128})$
$=7−(1−\frac {1}{128})$
$=7−\frac {127}{128}$
$=6\frac {1}{128}$