解:
$ (1)$原式$=4x^2 - 8x + 3x - 6 - 2(2x^2 - 3x - 2x + 3)$
$=4x^2 - 8x + 3x - 6 - 4x^2 + 6x + 4x - 6=5x - 12.$
$ $当$x = -2$时,原式$=5×(-2)-12=-22.$
$ (2)$原式$=x^4 - 3x^3 + 2x^2 + px^3 - 3px^2 + 2px + qx^2 - 3qx + 2q$
$=x^4+(p - 3)x^3+(2 - 3p + q)x^2+(2p - 3q)x + 2q.$
$ $因为$(x^2 + px + q)(x^2 - 3x + 2)$的结果中不含$x^3$和$x^2$项,
所以$p - 3 = 0$且$2 - 3p + q = 0,$
所以$p = 3,$$q = 7.$