电子课本网 第34页

第34页

信息发布者:
解:
(1)原式$=4x^2 - 12x + 9 + x^2 - 16 + 10x - 5x^2=-2x - 7.$
当$x = -\frac{1}{2}$时,原式$=-2\times(-\frac{1}{2})-7=1 - 7=-6.$
(2)原式$=x^2 - 4xy + 4x^2 - y^2-(4x^2 - 4xy + y^2)=x^2 - 4xy + 4x^2 - y^2 - 4x^2 + 4xy - y^2=x^2 - 2y^2.$
当$x = -2,$$y = -\frac{1}{2}$时,原式$=(-2)^2 - 2\times(-\frac{1}{2})^2=4-\frac{1}{2}=3\frac{1}{2}.$
解:
​$ (1)$​原式​$=4x^2 - 8x + 3x - 6 - 2(2x^2 - 3x - 2x + 3)$​
​$=4x^2 - 8x + 3x - 6 - 4x^2 + 6x + 4x - 6=5x - 12.$​
​$ $​当​$x = -2$​时,原式​$=5×(-2)-12=-22.$​
​$ (2)$​原式​$=x^4 - 3x^3 + 2x^2 + px^3 - 3px^2 + 2px + qx^2 - 3qx + 2q$​
​$=x^4+(p - 3)x^3+(2 - 3p + q)x^2+(2p - 3q)x + 2q.$​
​$ $​因为​$(x^2 + px + q)(x^2 - 3x + 2)$​的结果中不含​$x^3$​和​$x^2$​项,
所以​$p - 3 = 0$​且​$2 - 3p + q = 0,$​
所以​$p = 3,$​​$q = 7.$​
解:因为$(a + b)^2 = 17,$$(a - b)^2 = 13,$
所以$a^2 + 2ab + b^2 = 17,$$a^2 - 2ab + b^2 = 13,$两式相减,得$4ab = 4,$所以$ab = 1.$
所以$a^2 - 3ab + b^2=(a - b)^2 - ab=13 - 1 = 12.$
解:原式$=(a^2 + b^2)^2 - 2(ab)^2=[(a + b)^2 - 2ab]^2 - 2(ab)^2=(17 - 2\times1)^2 - 2\times1^2=15^2 - 2 = 223.$
$\pm3$
13
(3)解:设$AC = x,$$BC = y,$则$S_1 = x^2,$$S_2 = y^2.$
因为$S_1 + S_2 = 12,$所以$x^2 + y^2 = 12.$
因为$x + y = AB = 4,$所以$S_{阴影}=xy=\frac{1}{2}[(x + y)^2-(x^2 + y^2)]=\frac{1}{2}(4^2 - 12)=\frac{1}{2}(16 - 12)=2.$