电子课本网 第69页

第69页

信息发布者:
$17$
$0$
$\frac{1}{11}$
解:(1)$\begin{cases}x + y - z = 16,① \\ 3x + y = 47,② \\ x = 3z + 5,③\end{cases}$
$② - ①,$得$2x + z = 31.④$
把$③$代入$④,$得$6z + 10 + z = 31,$解得$z = 3.$
把$z = 3$代入$③,$得$x = 14.$把$x = 14$代入$②,$得$y = 5.$
则原方程组的解为$\begin{cases}x = 14 \\ y = 5 \\ z = 3\end{cases}.$
解:(2)$\begin{cases}x + y + z = 15,① \\ 2x + 3y - z = 9,② \\ 5x - 4y - z = 0,③\end{cases}$
$② + ①,$得$3x + 4y = 24.④$
$③ + ①,$得$6x - 3y = 15,$即$2x - y = 5.⑤$
$④ + ⑤×4,$得$11x = 44,$解得$x = 4.$
把$x = 4$代入$⑤,$得$8 - y = 5,$解得$y = 3.$
把$x = 4,$$y = 3$代入$①,$得$4 + 3 + z = 15,$解得$z = 8.$
所以原方程组的解为$\begin{cases}x = 4 \\ y = 3 \\ z = 8\end{cases}.$
解:由题意,得$\begin{cases}a - b + c = - 4 \\ c = - 2 \\ a + b + c = 2\end{cases},$解得$\begin{cases}a = 1 \\ b = 3 \\ c = - 2\end{cases},$
故原式$=(3×1 - 3 - 2 + 1)^{2024}=(-1)^{2024}=1.$
解:设$A,$$B,$$C$三种品牌的足球的单价分别为$x$元,$y$元,$z$元,根据题意,得$\begin{cases}x + y + z = 180 \\ 2x + y = 140 \\ 2y + z = 200\end{cases},$解得$\begin{cases}x = 40 \\ y = 60 \\ z = 80\end{cases}.$
答:$A,$$B,$$C$三种品牌的足球的单价分别为$40$元,$60$元,$80$元.