$(2)$解:由$(a,$$3)$为$“$美好点$”,$得$3a=a+3,$解得$a=\frac {3}{2}$
(3) 解:当$m = \frac{3}{2}$时,点$(x,y)$是“美好点”,理由如下:
解方程组$\begin{cases}x - 2y = m + 1\\2x + y = 2m - 3\end{cases},$
由$x - 2y = m + 1$可得$x = m + 1 + 2y,$
将$x = m + 1 + 2y$代入$2x + y = 2m - 3$得:
$2(m + 1 + 2y)+y = 2m - 3,$
$2m + 2 + 4y + y = 2m - 3,$
$5y = - 5,$解得$y = - 1,$
把$y = - 1$代入$x = m + 1 + 2y$得$x = m + 1 - 2 = m - 1.$
若点$(x,y)$是“美好点”,则$m - 1+( - 1)=( - 1)×(m - 1),$
$m - 2 = - m + 1,$
$m + m = 1 + 2,$
$2m = 3,$解得$m = \frac{3}{2},$
所以当$m = \frac{3}{2}$时,点$(x,y)$是“美好点”.