解:
(1)因为$2^{x}\cdot2^{3}=32,$所以$2^{x + 3}=2^{5},$所以$x + 3 = 5,$所以$x = 2;$
(2)因为$2\div8^{x}\cdot16^{x}=32,$所以$2\div2^{3x}\cdot2^{4x}=2^{5},$所以$2^{1 - 3x + 4x}=2^{5},$所以$x + 1 = 5,$所以$x = 4;$
(3)因为$x = 5^{m}-2,$所以$5^{m}=x + 2,$所以$y = 3 - 25^{m}=3-(5^{2})^{m}=3-(5^{m})^{2}=3-(x + 2)^{2}=-x^{2}-4x - 1,$即$y=-x^{2}-4x - 1$