解:
(1)$AB// DE,$理由:如答图,延长$AF,$$DE$交于点$G.$
因为$CD// AF,$所以$\angle CDE+\angle G = 180^{\circ}.$
因为$\angle CDE=\angle BAF,$所以$\angle BAF+\angle G = 180^{\circ},$
所以$AB// DE.$
(2)如答图,延长$BC,$$ED$交于点$H.$
因为$AB\perp BC,$所以$\angle B = 90^{\circ}.$
因为$AB// DE,$所以$\angle B+\angle H = 180^{\circ},$
所以$\angle H = 90^{\circ}.$
因为$\angle BCD = 124^{\circ},$
所以$\angle DCH = 180^{\circ}-\angle BCD = 56^{\circ},$
所以$\angle CDH = 90^{\circ}-\angle DCH = 34^{\circ}.$
因为$CD// AF,$所以$\angle G=\angle CDH = 34^{\circ}.$
因为$\angle DEF = 80^{\circ},$
所以$\angle FEG = 180^{\circ}-\angle DEF = 100^{\circ},$
所以$\angle AFE=\angle G+\angle FEG = 34^{\circ}+100^{\circ}=134^{\circ}.$