(1) 解:由题意,得$1000\times(1 + 10\%) + 100 = 1000\times1.1+100 = 1100 + 100 = 1200$(辆).
故第3周该区域内各类共享单车的总数是$1200$辆.
(2) 解:设第1周所有单车的每辆平均使用次数为$a.$
由题意,得$2.5a\times(1 + m)^2\times100 = a\times(1 + m)\times1200\times\frac{1}{4}.$
两边同时除以$a$得$2.5\times(1 + m)^2\times100=(1 + m)\times1200\times\frac{1}{4},$
$250(1 + m)^2 = 300(1 + m),$
移项得$250(1 + m)^2-300(1 + m)=0,$
提取公因式$50(1 + m)$得$50(1 + m)[5(1 + m)-6]=0,$
即$50(1 + m)(5 + 5m - 6)=0,$
$50(1 + m)(5m - 1)=0,$
所以$1 + m = 0$或$5m - 1 = 0,$
解得$m_1 = 0.2 = 20\%,$$m_2 = - 1$(不合题意,舍去).
故$m$的值为$20\%.$