解: 连接$OA,$过点$O$作$OD\perp AB$于点$D,$$OE\perp AC$于点$E,$则$\angle ODA=\angle OEA = 90^{\circ},$$AD=\frac{1}{2}AB,$$AE=\frac{1}{2}AC。$因为$AB = 2\sqrt{2},$$AC = 2\sqrt{3},$所以$AD=\sqrt{2},$$AE=\sqrt{3}。$因为$\odot O$的半径为$2,$所以$OA = 2,$所以$OD=\sqrt{OA^{2}-AD^{2}}=\sqrt{2},$$OE=\sqrt{OA^{2}-AE^{2}} = 1,$所以$OD = AD,$$OE=\frac{1}{2}OA,$所以$\angle OAD=\angle AOD=\frac{1}{2}(180^{\circ}-\angle ODA)=45^{\circ},$$\angle OAE = 30^{\circ}。$分类讨论如下:
① 如图①,当圆心$O$在$\angle BAC$内部时,$\angle BAC=\angle OAD+\angle OAE = 75^{\circ},$所以$\angle BOC=2\angle BAC = 150^{\circ};$
② 如图②,当圆心$O$在$\angle BAC$外部时,$\angle BAC=\angle OAD-\angle OAE = 15^{\circ},$所以$\angle BOC=2\angle BAC = 30^{\circ}。$
综上所述,$\angle BOC$的度数为$150^{\circ}$或$30^{\circ}。$