(1)证明:$\because DA$平分$\angle BDF,$$\therefore \angle ADF=\angle ADB.$$\because \angle ABC+\angle ADC = 180^{\circ},$$\angle ADC+\angle ADF = 180^{\circ},$$\therefore \angle ADF=\angle ABC.$$\therefore \angle ADB=\angle ABC.$$\because \angle ACB=\angle ADB,$$\therefore \angle ABC=\angle ACB.$$\therefore AB = AC$
(2)解:如图,过点$A$作$AG\perp BD,$垂足为$G.$$\because DA$平分$\angle BDF,$$AE\perp CF,$$AG\perp BD,$$\therefore AG = AE,$$\angle AGB=\angle AGD=\angle AEC = 90^{\circ}.$ 在$Rt\triangle AED$和$Rt\triangle AGD$中,$\begin{cases}AD = AD\\AE = AG\end{cases},$$\therefore Rt\triangle AED\cong Rt\triangle AGD.$$\therefore DE = DG = 2.$ 在$Rt\triangle AEC$和$Rt\triangle AGB$中,$\begin{cases}AC = AB\\AE = AG\end{cases},$$\therefore Rt\triangle AEC\cong Rt\triangle AGB.$$\therefore CE = BG.$$\because BD = 11,$$\therefore BG = BD - DG = 11 - 2 = 9.$$\therefore CE = BG = 9.$$\therefore CD = CE - DE = 9 - 2 = 7$