(1)证明:$\because PA,$$PB$是$\odot O$的切线,$OA,$$OB$是$\odot O$的半径,$\therefore OA\perp PA,$$OB\perp PB.$$\because OC// PA,$$CD\perp AP,$$\therefore CD\perp OC.$$\therefore \angle OAD=\angle CDA=\angle OCD = 90^{\circ}.$$\therefore$四边形$OADC$是矩形.$\therefore OC = AD$
(2)解:设$OC = AD = x.$$\because$四边形$OADC$是矩形,$\odot O$的半径是$3,$$PA = 9,$$\therefore OA = OB = CD = 3,$$PD = PA - AD = 9 - x.$$\because OC// PA,$$\therefore \angle OCB = \angle P.$$\because OB\perp PB,$$CD\perp AP,$$\therefore \angle OBC = \angle CDP = 90^{\circ}.$在$\triangle OCB$和$\triangle CPD$中,$\begin{cases}\angle OBC=\angle CDP = 90^{\circ},\\\angle OCB=\angle P,\\OB = CD,\end{cases}$ $\therefore \triangle OCB\cong\triangle CPD.$$\therefore BC = DP = 9 - x.$在$Rt\triangle OCB$中,由勾股定理,得$OC^{2}=OB^{2}+BC^{2},$$\therefore x^{2}=3^{2}+(9 - x)^{2},$解得$x = 5.$$\therefore OC = x = 5$