(1)证明:如图,连接$OC.$$\because DC$与$\odot O$相切于点$C,$$\therefore OC\perp CD.$$\because BD\perp CD,$$\therefore OC// BD.$$\therefore \angle OCB = \angle DBC.$$\because OC = OB,$$\therefore \angle OCB = \angle OBC.$$\therefore \angle OBC = \angle DBC.$$\therefore BC$平分$\angle ABD$
(2)解:如图,过点$C$作$CH\perp AB$于点$H.$$\because AB$为$\odot O$的直径,$\therefore \angle ACB = 90^{\circ}.$$\therefore BC=\sqrt{AB^{2}-AC^{2}}=\sqrt{5^{2}-(2\sqrt{5})^{2}}=\sqrt{5}.$$\because S_{\triangle ABC}=\frac{1}{2}CH\cdot AB=\frac{1}{2}BC\cdot AC,$$\therefore CH=\frac{BC\cdot AC}{AB}=\frac{\sqrt{5}\times2\sqrt{5}}{5}=2.$在$Rt\triangle BCH$中,$BH=\sqrt{BC^{2}-CH^{2}}=\sqrt{(\sqrt{5})^{2}-2^{2}} = 1.$$\because BC$平分$\angle ABD,$$CH\perp BA,$$CD\perp BD,$$\therefore CH = CD.$在$Rt\triangle BCH$和$Rt\triangle BCD$中,$\begin{cases}BC = BC,\\CH = CD,\end{cases}$ $\therefore Rt\triangle BCH\cong Rt\triangle BCD.$$\therefore BH = BD = 1$