解:因为$a + b = 17,$$0\leqslant a\leqslant10,$$0\leqslant b\leqslant10$且$a,$$b$为整数,所以$a = 7,$$b = 10$或$a = 8,$$b = 9$或$a = 9,$$b = 8$或$a = 10,$$b = 7.$ 分类讨论如下:
① 当$a = 7,$$b = 10$或$a = 10,$$b = 7$时,乙的成绩的方差是$s_{乙}^{2}=\frac{1}{5}\times[(10 - 9)^{2}\times2+(9 - 9)^{2}\times2+(7 - 9)^{2}]=1.2$(环²),则$s_{甲}^{2}<s_{乙}^{2},$所以甲比乙的成绩更稳定,符合题意;
② 当$a = 8,$$b = 9$或$a = 9,$$b = 8$时,乙的成绩的方差是$s_{乙}^{2}=\frac{1}{5}\times[(10 - 9)^{2}+(9 - 9)^{2}\times3+(8 - 9)^{2}]=0.4$(环²),则$s_{甲}^{2}>s_{乙}^{2},$所以乙比甲的成绩更稳定,不合题意. 综上所述,$a,$$b$的所有可能取值为$a = 7,$$b = 10$或$a = 10,$$b = 7.$