解:$AD + BC = AB,$理由:连接$BE$
∵$AE$平分$∠BAD,$$CD\perp AD,$$EF\perp AB$
∴$∠D = ∠AFE = ∠BFE = 90°,$$DE = FE$
在$Rt\triangle ADE$和$Rt\triangle AFE$中
$\begin {cases}AE = AE\\DE = FE\end {cases}$
∴$Rt\triangle ADE≌ Rt\triangle AFE(\mathrm {HL}),$∴$AD = AF$
∵$AD// BC,$$CD\perp AD,$∴$CD\perp BC,$∴$∠C = ∠BFE = 90°$
又∵$E$是$DC$的中点,∴$CE = DE,$∴$FE = CE$
在$Rt\triangle BEF $和$Rt\triangle BEC$中
$\begin {cases}BE = BE\\FE = CE\end {cases}$
∴$Rt\triangle BEF≌ Rt\triangle BEC(\mathrm {HL}),$∴$BF = BC$
∴$AD + BC = AF + BF = AB$