证明:连接$MA,$$MC$
∵点$M$在$AC$的垂直平分线上,∴$MA = MC$
∵$MD\perp AD,$$ME\perp BC,$∴$∠ADM = ∠CEM = 90°$
在$Rt\triangle MAD$和$Rt\triangle MCE$中
$\begin {cases}MA = MC\\AD = CE\end {cases}$
∴$Rt\triangle MAD≌ Rt\triangle MCE(\mathrm {HL}),$∴$MD = ME$
又∵$MD\perp BA,$$ME\perp BC$
∴点$M$在$∠ABC$的平分线上,即$BM$平分$∠ABC$