解:(2)①$\alpha+\beta = 180^{\circ}。$
理由:$\because\angle BAC=\angle DAE,$
$\therefore\angle BAC-\angle DAC=\angle DAE-\angle DAC,$
即$\angle BAD=\angle CAE。$
在$\triangle ABD$和$\triangle ACE$中,
$\begin{cases}AB = AC \\\angle BAD=\angle CAE \\AD = AE\end{cases}$
$\therefore\triangle ABD\cong\triangle ACE(SAS)。$
$\therefore\angle B=\angle ACE。$
$\therefore\angle B+\angle ACB=\angle ACE+\angle ACB=\beta。$
$\because\angle BAC+\angle B+\angle ACB = 180^{\circ},$
$\therefore\alpha+\beta = 180^{\circ}。$
②当点$D$在线段$BC$及其延长线上时,$\alpha+\beta = 180^{\circ};$
当点$D$在线段$BC$的反向延长线上时,$\alpha=\beta。$