电子课本网 第79页

第79页

信息发布者:
解:
$\begin{aligned}&(36x^{4}y^{3}-24x^{3}y^{2}+3x^{2}y^{2})\div(-6x^{2}y^{2})\\=&36x^{4}y^{3}\div(-6x^{2}y^{2})-24x^{3}y^{2}\div(-6x^{2}y^{2})+3x^{2}y^{2}\div(-6x^{2}y^{2})\\=& - 6x^{2}y + 4x-\frac{1}{2}\end{aligned}$
解:
$\begin{aligned}&(x + 1)(x - 2)+(2x + 1)(x - 5)-3(x^{2}-6x - 1)\\=&x^{2}-2x+x - 2+(2x^{2}-10x+x - 5)-3x^{2}+18x + 3\\=&x^{2}-x - 2+2x^{2}-9x - 5-3x^{2}+18x + 3\\=&(x^{2}+2x^{2}-3x^{2})+(-x-9x + 18x)+(-2-5 + 3)\\=&8x-4\end{aligned}$
当$x =-\frac{1}{2}$时,原式$=8\times(-\frac{1}{2})-4=-4 - 4=-8$
解:
原不等式可化为$2x-x^{2}+5x - x + 5>x - x^{2}+3$
移项可得:$2x-x^{2}+5x - x - x + x^{2}>3 - 5$
合并同类项得:$5x>-2$
解得$x>-\frac{2}{5}$
(1)解:
$\begin{aligned}\because(x + a)(x + 6)&=x^{2}+6x+ax + 6a\\&=x^{2}+(6 + a)x+6a\end{aligned}$
又$\because x^{2}+(6 + a)x+6a=x^{2}+8x + 12$
$\therefore\begin{cases}6 + a = 8\\6a = 12\end{cases}$
由$6 + a = 8$得$a = 2,$将$a = 2$代入$6a = 12,$等式成立,所以$a = 2。$
(2)当$a = 2,$$b=-3$时,
$\begin{aligned}&(x + a)(x + b)\\=&(x + 2)(x - 3)\\=&x^{2}-3x+2x - 6\\=&x^{2}-x - 6\end{aligned}$
$x^{3}+1$
$m^{3}+8$
$8a^{3}+1$
解​$:(2)$​规律:​$(a+b)(a^2-ab+b^2)=a^3+b^3.$​
证明:​$(a+b)(a^2-ab+b^2)$​
​$=a^3-a^2b+ab^2+a^2b-ab^2+b^3$​
​$=a^3+b^3.$​
​$(3)∵x+y=2,$​​$xy=-3,$​
​$∴x^2+y^2=(x+y)^2-2xy=10,$​
​$∴x^3+y^3$​
​$=(x+y)(x^2-xy+y^2)$​
​$=26.$​