(1)解:
$\begin{aligned}\because(x + a)(x + 6)&=x^{2}+6x+ax + 6a\\&=x^{2}+(6 + a)x+6a\end{aligned}$
又$\because x^{2}+(6 + a)x+6a=x^{2}+8x + 12$
$\therefore\begin{cases}6 + a = 8\\6a = 12\end{cases}$
由$6 + a = 8$得$a = 2,$将$a = 2$代入$6a = 12,$等式成立,所以$a = 2。$
(2)当$a = 2,$$b=-3$时,
$\begin{aligned}&(x + a)(x + b)\\=&(x + 2)(x - 3)\\=&x^{2}-3x+2x - 6\\=&x^{2}-x - 6\end{aligned}$