电子课本网 第95页

第95页

信息发布者:
C
C
110
解:原式​$=(3a)²-(2a-b)²$​
​$=(3a+2a-b)(3a-2a+b)$​
​$= (5a - b)(a + b)$​
解:原式​$=(2a-b)²-(6a)²$​
​$=(2a-b+6a)(2a-b-6a)$​
​$= -(8a - b)(4a + b)$​
解:原式​$=(x+3y+x-3y)(x+3y-x+3y)$​
​$=2x·6y$​
​$= 12xy$​
解:原式​$=(5m-5n)²-(m+n)²$​
​$=(5m-5n-m-n)(5m-5n+m+n)$​
​$=(4m-6n)(6m-4n)$​
​$=4(2m-3n)(3m-2n)$​
解:原式​$=\frac {1000×1000}{(252+248)×(252-248)}$​
​$=\frac {1000×1000}{500×4}$​
​$=500$​
解​$:$​原式​$= (1-\frac {1}{2})× (1+\frac {1}{2})× (1-\frac {1}{3}) × (1+\frac {1}{3})×(1-\frac {1}{4})×(1+\frac {1}{4})×...×(1-\frac {1}{2025})×(1+\frac {1}{2025})$​
​$=\frac {1}{2}×\frac {3}{2}×\frac {2}{3}×\frac {4}{3}×\frac {3}{4}×\frac {5}{4}×...×\frac {2023}{2024}×\frac {2025}{2024}×\frac {2026}{2025}$​
​$=\frac {1}{2}×\frac {2026}{2025}$​
​$=\frac {1013}{2025}$​
设大圆盘的直径为$d_1$cm,小圆盘的直径为$d_2$cm. 根据题意,得$\pi(\frac{d_1}{2})^{2}-4\pi(\frac{d_2}{2})^{2}=7\pi,$即$d_1^{2}-4d_2^{2}=28.$ 分解因式,得$(d_1 + 2d_2)(d_1 - 2d_2)=28.$ $\because d_1,d_2$均为整数,$\therefore d_1 + 2d_2,$$d_1 - 2d_2$均为整数. 又$\because d_1 + 2d_2$和$d_1 - 2d_2$的奇偶性相同,$\therefore \begin{cases}d_1 + 2d_2 = 14\\d_1 - 2d_2 = 2\end{cases},$解得$\begin{cases}d_1 = 8\\d_2 = 3\end{cases},$$\therefore \frac{d_1}{2}=4,$$\frac{d_2}{2}=1.5.$ $\therefore$大、小圆盘的半径分别为4cm和1.5cm