解$:$原式$= (1-\frac {1}{2})× (1+\frac {1}{2})× (1-\frac {1}{3}) × (1+\frac {1}{3})×(1-\frac {1}{4})×(1+\frac {1}{4})×...×(1-\frac {1}{2025})×(1+\frac {1}{2025})$
$=\frac {1}{2}×\frac {3}{2}×\frac {2}{3}×\frac {4}{3}×\frac {3}{4}×\frac {5}{4}×...×\frac {2023}{2024}×\frac {2025}{2024}×\frac {2026}{2025}$
$=\frac {1}{2}×\frac {2026}{2025}$
$=\frac {1013}{2025}$