电子课本网 第130页

第130页

信息发布者:
解:在$\triangle ABC$中,$\angle B = 40^{\circ},$$\angle C = 60^{\circ},$根据三角形内角和为$180^{\circ},$
可得$\angle BAC = 180^{\circ}-40^{\circ}-60^{\circ}=80^{\circ}。$
因为$AD$平分$\angle BAC,$所以$\angle BAD=\angle CAD = \frac{1}{2}\angle BAC = 40^{\circ}。$
在$\triangle ABD$中,$\angle B = 40^{\circ},$$\angle BAD = 40^{\circ},$根据三角形内角和为$180^{\circ},$
可得$\angle ADB = 180^{\circ}-40^{\circ}-40^{\circ}=100^{\circ}。$
因为$DE\perp BC,$所以$\angle BDE = 90^{\circ}。$
则$\angle ADE=\angle ADB - \angle BDE = 100^{\circ}-90^{\circ}=10^{\circ}。$
(1)证明:因为$AE$平分$\angle CAD,$所以$\angle DAE=\angle CAE。$
又因为$\angle BAE=\angle BAD + \angle DAE,$$\angle BEA=\angle CAE + \angle C,$
且$\angle BAE=\angle BEA,$
所以$\angle BAD=\angle C。$
(2)解:由(1)知$\angle BAD = \angle C = 55^{\circ},$
所以$\angle BEA=\angle BAE = 55^{\circ}+\angle DAE。$
因为$\angle B+\angle BEA+\angle BAE = 180^{\circ},$$\angle B = 3\angle DAE,$
所以$3\angle DAE+2(55^{\circ}+\angle DAE)=180^{\circ},$
$3\angle DAE + 110^{\circ}+2\angle DAE=180^{\circ},$
$5\angle DAE=180^{\circ}-110^{\circ},$
$5\angle DAE = 70^{\circ},$
$\angle DAE = 14^{\circ}。$
所以$\angle B = 3\times14^{\circ}=42^{\circ}。$
解:(1)因为$BD,$$CE$都是$\triangle ABC$的角平分线,
所以$\angle DBC=\angle ABD=\frac{1}{2}\angle ABC,$$\angle ECB=\angle ACE=\frac{1}{2}\angle ACB。$
则$\angle DBC+\angle ECB=\frac{1}{2}(\angle ABC+\angle ACB)=\frac{1}{2}(180^{\circ}-\angle A)=90^{\circ}-\frac{1}{2}\angle A。$
所以$\angle BOC = 180^{\circ}-(\angle DBC+\angle ECB)=180^{\circ}-(90^{\circ}-\frac{1}{2}\angle A)=90^{\circ}+\frac{1}{2}\angle A。$
又因为$\angle BOC-\angle A = 54^{\circ},$即$90^{\circ}+\frac{1}{2}\angle A-\angle A = 54^{\circ},$
$90^{\circ}- \frac{1}{2}\angle A=54^{\circ},$
$\frac{1}{2}\angle A=90^{\circ}-54^{\circ},$
$\frac{1}{2}\angle A = 36^{\circ},$
$\angle A = 72^{\circ}。$
所以$\angle BOC = 90^{\circ}+\frac{1}{2}\times72^{\circ}=90^{\circ}+36^{\circ}=126^{\circ}。$
(2)因为$BD,$$CE$都是$\triangle ABC$的高,所以$\angle ADB=\angle AEC = 90^{\circ}。$
因为$\angle A+\angle ADB+\angle DOE+\angle AEC = 360^{\circ},$
所以$\angle A + 90^{\circ}+\angle DOE+90^{\circ}=360^{\circ},$$\angle A=180^{\circ}-\angle DOE。$
又因为$\angle DOE=\angle BOC,$所以$\angle A = 180^{\circ}-\angle BOC。$
因为$\angle BOC-\angle A = 54^{\circ},$所以$\angle BOC-(180^{\circ}-\angle BOC)=54^{\circ},$
$2\angle BOC=54^{\circ}+180^{\circ},$
$2\angle BOC = 234^{\circ},$
$\angle BOC = 117^{\circ}。$
(3)$\angle ODC-\angle BEO = 18^{\circ}。$
理由:因为$\angle BEO=\angle A+\angle ACE,$
$\angle BOC=\angle BEO+\angle ABD=\angle A+\angle ACE+\angle ABD,$
所以$\angle BOC-\angle A=\angle ACE+\angle ABD。$
因为$\angle BOC-\angle A = 54^{\circ},$$\angle ABD = 2\angle ACE,$
所以$54^{\circ}=\angle ACE+2\angle ACE,$
$3\angle ACE = 54^{\circ},$
$\angle ACE = 18^{\circ}。$
所以$\angle ABD = 2\times18^{\circ}=36^{\circ}。$
因为$\angle BOC=\angle ODC+\angle DCO=\angle BEO+\angle ABD,$
所以$\angle BEO + 36^{\circ}=\angle ODC+18^{\circ},$
则$\angle ODC-\angle BEO = 18^{\circ}。$