解:(1)证明:$\because\angle A=\angle A,$$\angle ABE=\angle ACF,$$AE = AF,$
$\therefore\triangle ABE\cong\triangle ACF。$$\therefore AB = AC。$
$\therefore\angle ABC = \angle ACB。$
$\therefore\angle ABC-\angle ABE=\angle ACB-\angle ACF,$即$\angle DBC = \angle DCB。$
$\therefore BD = CD,$即$\triangle BCD$是等腰三角形。
(2)由(1),知$AB = AC,$
又$\because\angle A = 40^{\circ},$
$\therefore\angle ABC=\angle ACB=\dfrac{1}{2}\times(180^{\circ}-40^{\circ}) = 70^{\circ}。$
$\because BD = CD,$$BC = BD,$
$\therefore BD = CD = BC。$
$\therefore\triangle DBC$是等边三角形。
$\therefore\angle DBC = 60^{\circ}。$
$\therefore\angle ABE=\angle ABC-\angle DBC = 10^{\circ}。$
$\therefore\angle BEC=\angle A+\angle ABE = 50^{\circ}。$