解:(1)已知:在$\triangle ABC$中,$\angle ACB = 90^{\circ},$$\angle BAC = 30^{\circ};$
求证:$BC=\dfrac{1}{2}AB。$如图①,以点$B$为圆心,$BA$长为半径作弧,交$BC$的延长线于点$D,$连接$AD,$则$AB = BD。$
$\because\angle ACB = 90^{\circ},$$\angle BAC = 30^{\circ},$$\therefore\angle B = 60^{\circ}。$
$\therefore\triangle ABD$是等边三角形。
$\therefore AB = AD。$
在$Rt\triangle ABC$和$Rt\triangle ADC$中,
$\begin{cases}AB = AD\\AC = AC\end{cases},$
$\therefore Rt\triangle ABC\cong Rt\triangle ADC。$
$\therefore BC = DC。$$\because BC + DC = BD,$
$\therefore BC=\dfrac{1}{2}BD=\dfrac{1}{2}AB。$
(2)连接$DM。$$\because$对折长方形纸片$ABCD,$$EF$为折痕,
$\therefore AE = DE,$$\angle AEM=\angle DEM = 90^{\circ}。$
又$\because EM = EM,$$\therefore\triangle AEM\cong\triangle DEM。$
$\therefore AM = DM。$
$\because$沿$AP$折叠,使点$D$落在折痕$EF$上的点$M$处,
$\therefore AD = AM,$$\angle DAP=\angle PAM,$易得$\angle PDA=\angle PMA = 90^{\circ}。$
$\therefore AD = AM = DM。$$\therefore\triangle ADM$为等边三角形。
$\therefore\angle DAM = 60^{\circ}。$$\therefore\angle DAP=\angle PAM=\dfrac{1}{2}\angle DAM = 30^{\circ}。$
又$\because\angle PMA = 90^{\circ},$$\therefore$由(1),得$PM=\dfrac{1}{2}PA。$
(3)如图②,过点$C$作$CD\perp BA$交$BA$的延长线于点$D。$
$\because AB = AC = 20\mathrm{cm},$$\therefore\angle ACB=\angle ABC = 15^{\circ}。$
$\therefore\angle DAC=\angle ABC+\angle ACB = 30^{\circ}。$
$\therefore$由(1),得$CD=\dfrac{1}{2}AC = 10\mathrm{cm}。$
$\therefore\triangle ABC$的面积$=\dfrac{1}{2}AB\cdot CD=\dfrac{1}{2}\times20\times10 = 100(\mathrm{cm}^{2})。$