电子课本网 第39页

第39页

信息发布者:
$ \begin{aligned}解:原式&=3-2\sqrt {6} +2+2\sqrt {6} -2\sqrt {3} \\ &=5-2\sqrt {3} \\ \end{aligned}$
$解:原式=\frac {2}{a}\sqrt {a^{2} ab}+\frac {4b\sqrt {4ab} }{\sqrt {4b}·\sqrt {4b}}-\frac {3a\sqrt {9ab} }{\sqrt {9a}·\sqrt {9a}\ }-\frac {a} {b}·\frac {\sqrt {abb^{2} } }{\sqrt {a} ·\sqrt {a} }$
$=\frac {2a}{a}\sqrt {ab}+\frac {8b}{4b}\sqrt {ab}-\frac {9a }{9a } \sqrt {ab}- \frac {a}{b }·\frac {b}{a }\sqrt {ab}$
$=2\sqrt {ab} +2\sqrt {ab} -\sqrt {ab} -\sqrt {ab}\ $
$=4\sqrt {ab} -2\sqrt {ab}\ $
$=2\sqrt {ab}\ $
$解:(1)∵a、b满足a= \sqrt{b-4}+ \sqrt{4-b}-1,\ $
$∴b=4,a=-1,∴A(-1,0)、B(4,0),$
$∴S_{△ABC} =\frac{1}{2}AB·OC=\frac{1}{2}×5×3=\frac{15}{2}.$
$(2)设M的坐标为(m,0),\ $
$∵S_{△ACM} =\frac{1}{3}S_{△ABC} =\frac{1}{3}×\frac{15}{2}=\frac{5}{2},\ $
$∴S_{△ACM} =\frac{1}{2}AM·OC=\frac{1}{2}AM·3=\frac{5}{2},$
$∴AM=\frac{5}{3},∴当m-(-1)=\frac{5}{3}时,m=\frac{2}{3};\ $
$当-1-m=\frac{5}{3}时,m=-\frac{8}{3}.$
$∴符合条件的点M有两个(\frac{2}{3},0)和(-\frac{8}{3},0).$