$解:设点D(m,\frac{2}{m}),则点B(4m,\frac{2}{m}).$
$∵点G与点O关于点C对 称,$
$∴点G(8m,0),易得点E(4m,\frac{1}{2m}).$
$设直线DE的函数表达式为y=px+n,将点D、E的坐标代入,$
$得\begin{cases}{ \frac {2}{m}=mp+n, }\ \\ { \frac {1}{2m}=4mp+n, } \end{cases}\ $
$解得\begin{cases}{ p=-\frac {1}{2m^{2} } }\ \\ { n=\frac {5}{2m}, } \end{cases}\ \ $
$∴直线DE的函数表达式为$
$y=-\frac{1}{2m^{2} }x+\frac{5}{2m},\ 令y=0,$
$∴x=5m,$
$∴点F(5m,0).$
$∴FC=8m-5m=3m.$
$又BD=4m-m=3m=FG,且FG//BD,$
$∴四边形BDFG为平行四边形.$