首 页
电子课本网
›
第139页
第139页
信息发布者:
$14\sqrt {2}\ $
4
3
$解:原式=6 \sqrt{xy}+3 \sqrt{xy}-4 \sqrt{xy}-6 \sqrt{xy}$
$~~~~~~~~~~~~~~~~=- \sqrt{xy},$
$∵x=\sqrt{6}+\sqrt{2},y= \sqrt{6}-\sqrt{2},$
$∴原式=- \sqrt{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})}$
$~~~~~~~~~~~~=- \sqrt{6-2}= -\sqrt{4}=-2.$
2023
(更多请点击查看作业精灵详解)
(更多请点击查看作业精灵详解)
$解:∵\sqrt{2a+3} 与 \sqrt{5} 能合并,$
$∴\sqrt{2a+3} =m \sqrt{5} (m为正整数),$
$∴2a+3= 5m²,∴a= \frac{5m²-3}{2} .$
$又a为正整数,∴5m²-3为偶数,$
$∴m为正奇数,∴当m=1时,a=1;$
$当m=3时,a=21;当m=5时,a=61,$
$∴满足条件的a的值可以为1,21,61.$
$解:∵4x²+y²-4x-6y+10=0,$
$∴(2x-1)²+(y-3)²=0,$
$∴2x-1=0, y-3=0,$
$解得x=\frac{1}{2},y=3.$
$∵ (\frac {2}{3}x\sqrt {9x} +y²\sqrt {\frac {x}{y^{3} }}\ )-(x²\sqrt{\frac{1}{x}}-5x\sqrt { \frac {y}{x}})$
$=2x\sqrt {x} +\ \sqrt {xy}-x \sqrt{x}+5\sqrt {xy}\ \ $
$=x \sqrt{x}+6 \sqrt{xy}.$
$当x=\frac{1}{2},y=3时,$
$ \begin{aligned}原式&=\frac{1}{2}×\sqrt {\frac {1}{2}} +6×\sqrt {\frac {3}{2}}\ \\ &=\frac {\sqrt {2} }{4}+3\sqrt {6} . \\ \end{aligned}$
$解:乙的说法是正确的.理由:$
$ \begin{aligned} 由y&= \sqrt{x-8}+ \sqrt{8-x}+18, \\ 可得x&=8,y= 18. \\ 因此M&=\frac{x+y}{\sqrt {x} -\sqrt{y}}-\frac{2\sqrt{xy}}{\sqrt {x} -\sqrt{y}} \\ &=\frac{(\sqrt{x}-\sqrt{y})^{2} }{\sqrt{x}-\sqrt{y}} \\ &=\sqrt{x}- \sqrt{y} \\ &= \sqrt{8}- \sqrt{18} \\ &=-\sqrt{2}. \\ N&=\frac{3\sqrt {8} -2\sqrt{18}}{\sqrt{26}+\sqrt{10}} \\ &=\frac{6\sqrt {2} -6\sqrt {2} }{\sqrt{26}+\sqrt{10}} \\ &=0. \\ \end{aligned}$
$∴M<N,即N的值比M大.$
上一页
下一页