电子课本网 第171页

第171页

信息发布者:
90
45或90
$②∵AB⊥AC,AB=2,AC=4,$
$∴BC=2\sqrt {5} .$
$根据条件可知AD与BC之间的距离h为\frac{4\sqrt {5} }{5}.$
$如图①,当EF=AC时,四边形AECF是矩形,$
$AC=4,$
$∴AF= \sqrt{4^{2} -(\frac{4\sqrt {5} }{5})^{2} }=\frac{8\sqrt {5} }{5},$
$∴矩形AECF的面积=AF·h=\frac{32}{5}.$
$如图②,当EF=BD时,四边形BEDF是矩形,$
$BD=4\sqrt {2} ,$
$∴DF= \sqrt{(4\sqrt {2} )²-(\frac{4\sqrt {5} }{5})^{2} }=\frac{12\sqrt {15} }{5},$
$∴矩形BEDF的面积=DF·h=\frac{48}{5}.$
$综上,矩形的面积为\frac{32}{5}或\frac{48}{5.} $
(更多请点击查看作业精灵详解)
$解:将A、C点的坐标代入中点坐标公式,$
$得x_{M} =\frac{-1+3}{2}=1,$
$y_{M}\ = \frac{3+(-1)}{2}=1,$
$∴AC中点M的坐标为(1,1).$
$解:连接AC、BD交于点M.$
$∵四边形ABCD是平行四边形,$
$∴M是AC与BD的中点将A(-1,5) ,C(3,3)代入$
$\begin{cases}{x_{M} =\dfrac {x_{A}+x_{C}}{2},}\ \\ {y_{M}=\dfrac {y_{A}+y_{C}}{2}, } \end{cases}\ $
$解得\begin{cases}{x_{M}=1,}\ \\ {y_{M}=4,} \end{cases}\ $
$即点M的坐标为(1,4).设点D的坐标为(x_{D},y_{D}),$
$由中点坐标公式,得$
$\begin{cases}{x_{M} =\dfrac {x_{B}+x_{D}}{2}, }\ \\ {y_{M}=\dfrac {y_{B}+y_{D}}{2} ,} \end{cases}$
$解得\begin{cases}{x_{D}=4,}\ \\ {y_{D}=6,} \end{cases}$
$即点D的坐标为(4,6).\ $

$解:能设A(a,\frac{8}{a}),$
$则B(\frac{a}{4},\frac{8}{a}),C(a,\frac{2}{a}).\ $
$①当AB为对角线时,$
$有\begin{cases}{x_{A} +x_{B} =x_{C} +x_{D},}\ \\ {\ y_{A}+y_{B}= y_{C}+y_{D},} \end{cases}\ $
$即\begin{cases}{a+\frac {a}{4}=a+x_{B} ,\ }\ \\ { \frac {8}{a}+\frac {8}{a}=\frac {2}{a}+y_{D}, } \end{cases}\ $
$解得\begin{cases}{\ x_{D}=\frac {a}{4},}\ \\ {\ y_{D}=\frac {14}{a}, } \end{cases}\ $
$将D (\frac{a}{4},\frac{14}{a})代入y=2x,$
$解得a=2\sqrt {7}\ .$
$∴A(2\sqrt {7}, \frac{4\sqrt {7} }{7});$
$②当AC为对角线时,$
$有\begin{cases}{x_{A} +x_{C} =x_{B} +x_{D},}\ \\ { y_{A}+y_{C}= y_{B}+y_{D},} \end{cases}$
$即\ \begin{cases}{a+a=\frac {a}{4}+x_{D} ,\ }\ \\ { \frac {8}{a}+\frac {2}{a}=\frac {8}{a}+y_{D}, } \end{cases}\ $
$解得\begin{cases}{\ x_{D}=\frac {7}{4}a,}\ \\ { y_{D}=\frac {2}{a}, } \end{cases}\ $
$将 D (\frac{7}{4} a,\frac{2}{a} 代入 y=2x,$
$解得a= \frac{2\sqrt {7} }{7},$
$∴A(\frac{2\sqrt {7} }{7},4\sqrt {7} );$
$\ ③当AD为对角线时,$
$有\begin{cases}{x_{A} +x_{D} =x_{B} +x_{C},}\ \\ { y_{A}+y_{D}= y_{B}+y_{C},} \end{cases}$
$即 \begin{cases}{a+x_{D}=\frac {a}{4}+ a,\ }\ \\ { \frac {8}{a}+y_{D}=\frac {8}{a}+\frac {2}{a}, } \end{cases}\ $
$解得\begin{cases}{\ x_{D}=\frac {a}{4},}\ \\ { y_{D}=\frac {2}{a}, } \end{cases}\ $
$将D(\frac{a}{4},\frac{2}{a})代入y =2x,$
$解得a=2,$
$∴A (2,4).\ $
$综上所述,点A的坐标为(2\sqrt {7} ,\frac{4\sqrt {7} }{7}))或(\frac{2\sqrt {7} }{7},4\sqrt {7} )或(2,4). $