$证明:∵DE//AB$ $∴∠EDC=∠B$ $在△ABC和△CDE中$ ${{\begin{cases} {{∠B=∠EDC}} \\ {AB=CD} \\ {∠A=∠DCE} \end{cases}}}$ $∴△ABC≌△CDE(ASA),$∴DE=BC
$ 解:∵D是BC中点$ $∴S_{△ABC}=2S_{△ADC}=2×\frac {1}{2}×AD×CE=10$
$证明:∵D是BC中点$ $∴BD=CD$ $在△BDF和△CDE中$ ${{\begin{cases} {{∠BFD=∠CED}} \\ {∠BDF=∠CDE} \\ {BD=CD} \end{cases}}}$ $∴△BDF≌△CDE(AAS)$
$证明:∵AD//BC$ $∴∠ADB=∠CBD$ $在△ADB和△CBD中$ ${{\begin{cases} {{∠BAD=∠DCB}} \\ {∠ADB=∠CBD} \\ {DB=BD} \end{cases}}}$ $∴△ADB≌△CBD(AAS)$ $∴AD=CB$
$证明:∵∠ADB=∠CBD$ $∴180°-∠ADB=180°-∠CBD$ $即∠ADE=∠CBF$ $在△ADE和△CBF中$ ${{\begin{cases} {{AD=CB}} \\ {∠ADE=∠CBF} \\ {DE=BF} \end{cases}}}$ $∴△ADE≌△CBF(SAS)$ $∴∠E=∠F$ $∴AE//CF$
解:  记∠ABC=40°,在BC上截BD=1cm,在BA上截 BE=2cm,连接ED △BDE即为所求
解:能 
作∠QPG=∠ABC=40°,在PG上截PN=1cm,以N为圆心以2cm长为半径画弧交PQ于M △PMN即为所求
|
|