$解:连接OE$
$∵EF 与⊙O相切,∴OE⊥EF,∴∠OEF=90°$
$∵OE=OA=EF=2 \sqrt{2}$
$∴S_{△OEF} = \frac{1}{2}\ \mathrm {OE}\ \cdot\ EF = 4,∠EOF =∠EFO = \frac{1}{2}(180° - ∠OEF) = 45°$
$∴S_{扇形OBE}=\frac{45π×(2\sqrt{2})^2}{360}=π$
$∴S_{涂色}=S_{△OEF}-S_{扇形OBE}=4-π$
$∴涂色部分的面积为4-π$