电子课本网 第89页

第89页

信息发布者:
A

15
$解:(1)由题意,得数据x_{1}+y_{1},x_{2}+y_{2},···,x_n+ y_n的平均数为$
$\frac{1}{n}[(x_{1}+y_{1})+(x_{2}+y_{2})+···+(x_n+y_n)]=\frac{1}{n}(x_{1}+x_{2}+···+x_n )+\frac{1}{n}(y_{1}+y_{2}+···+y_n)=\overline{x}+\overline{y}$
$(2)由题意,得数据x_{1},y_{1},x_{2},y_{2},···,x_n,y_n的平均数为$
$\frac{1}{2n}(x_{1}+y_{1}+x_{2}+y_{2}+···+x_n+y+n)=\frac{1}{2}[\frac{1}{n}(x_{1}+x_{2}+···+x_n )+\frac{1}{n}(y_{1}+y_{2}+···+y_n)]=\frac{1}{2}(\overline{x}+\overline{y})$
$解:(1)由题意,得M\{x-1,-5,2x+3\}=\frac{1}{3}(x-1-5+2x+3)=x-1$
$∴x-1=\frac{1}{2}(1+3x),解得x=-3$
$(2)不存在,理由如下:$
$由题意,得 2A=2× \frac{1}{3}(2x-x+2+3)=\frac{2}{3}(x+5)$
$令 4x+1<-1,得 x<-\frac{1}{2};令 4x+1≥-1,得 x≥ -1,x≥-\frac{1}{2}$
$故B= \begin{cases}{-1,x≥-\frac 12}\\{4x+1,x<-\frac 12}\end{cases}$
$若2A=B,则当x≥ -\frac{1}{2}时,\frac{2}{3}(x+5)=-1$
$解得x=-\frac{13}{2},不合题意,舍去;$
$当x<-\frac{1}{2}时,\frac{2}{3}(x+5)=4x+1,解得x=\frac{7}{10},不合题意,舍去$
$综上所述,不存在实数x,使得2A=B成立$