$解:(1)由题意,得M\{x-1,-5,2x+3\}=\frac{1}{3}(x-1-5+2x+3)=x-1$
$∴x-1=\frac{1}{2}(1+3x),解得x=-3$
$(2)不存在,理由如下:$
$由题意,得 2A=2× \frac{1}{3}(2x-x+2+3)=\frac{2}{3}(x+5)$
$令 4x+1<-1,得 x<-\frac{1}{2};令 4x+1≥-1,得 x≥ -1,x≥-\frac{1}{2}$
$故B= \begin{cases}{-1,x≥-\frac 12}\\{4x+1,x<-\frac 12}\end{cases}$
$若2A=B,则当x≥ -\frac{1}{2}时,\frac{2}{3}(x+5)=-1$
$解得x=-\frac{13}{2},不合题意,舍去;$
$当x<-\frac{1}{2}时,\frac{2}{3}(x+5)=4x+1,解得x=\frac{7}{10},不合题意,舍去$
$综上所述,不存在实数x,使得2A=B成立$