$ 解:(1)\ \mathrm {A}=[(2\ \mathrm {a}-b)+(a-b)]^2=(3\ \mathrm {a}-2\ \mathrm {b})^2=9\ \mathrm {a}^2-12\ \mathrm {a} b+4\ \mathrm {b}^2$
$ (2) \because x(x-3)=3-x, $
$ \therefore(x-3)(x+1)=0 . $
$ \therefore x-3=0 或 x+1=0, $
$ 解得 x_1=3, x_2=-1 . $
$ \because a\gt b,$
$ \therefore a=3, b=-1 . $
$ \therefore A=(3\ \mathrm {a}-2\ \mathrm {b})^2=(9+2)^2=121$