$解:方程x-\frac{3k-2k^{2}}{x-1}=3k-2$
$是“十字分式方程”$
$可化为x-1+\frac{k(2k-3)}{x-1}=k+2k-3$
$当k>3时,2k-3-k=k-3>0$
$∵关于x的“十字分式方程”x-\frac{3k-2k^{2}}{x-1}=3k-2$
$的两个解分别为x_{1},x_{2}(k>3,x_{1}>x_{2})$
$∴x_{1}-1=2k-3,x_{2}-1=k$
$∴x_{1}=2k-2,x_{2}=k+1$
$∴\frac {x_{1}+4}{x_{2}}=\frac{2k-2+4}{k+1}=\frac{2k+2}{k+1}=\frac{2(k+1)}{k+1}=2$