$解:当△ABC是锐角三角形时,如图1$
$作AD⊥BC于点D ,则AD一定经过点圆心O$
$连接OB$
$在直角△OBD中, BD= \frac {1}{2}BC= \frac {1}{2}×6=3\ $
$则OD= \sqrt{OB^{2}-BD^{2}}= \sqrt{5^{2}-3^{2}}=4$
$则AD=OA+OD=5+4=9$
$则 {S}_{△ABC}= \frac {1}{2}BC\cdot AD= \frac {1}{2}×6×9=27$
$当△ABC是钝角三角形时,如图2$
$同理, OD=4\ $
$则AD=OA-OD=5-4=1$
$则 {S}_{△ABC}= \frac {1}{2}BC×AD= \frac {1}{2}×6×1=3$