$解:( 2 ) 连接CD、OD$
$∴∠BAD=∠DAC,$
$∴\overgroup{BD}=\overgroup{CD},$
$∴BD=CD,$
$∵BC是直径,$
$∴∠BDC=90°,$
$∴∠DBC=∠DCB=45°,$
$∵FC是切线,$
$∴∠BCF=90°,∴∠DCF=45°,$
$∴△CDF是等腰直角三角形,$
$∵DE=DB=3\sqrt{2},$
$∴OD=OC=3,DF=CD=BD=3\sqrt{2},$
$∴S_阴=S_{△CDF}-( S_{扇形OCD}-S_{△OCD} )$
$=\frac {1}{2}×3\sqrt{2}×3\sqrt{2}-$
$(\frac {90×\pi ×3^2}{360}-\frac {1}{2}×3×3) $
$=\frac {27}{2}-\frac {9\pi}{4} $