$证明:过点D作DG⊥CA于点G,连接DC,DB.$
$∵AD是△ABC的外角平分线,DE⊥AB,DG⊥CA,$
$∴DE=DG.$
$∵DF垂直平分BC,DC=DB.$
$在Rt△CDG和Rt△BDE中\ $
${{\begin{cases} {{DG=DE}} \\ {DC=DB} \end{cases}}}$
$∴Rt△CDG≌Rt△BDE(\mathrm {HL}),$
$∴BE=CG.$
$在△ADG和△ADE中\ $
${{\begin{cases} {{∠GAD=∠EAD}} \\ {∠AED=∠AGD} \\ {AD=AD} \end{cases}}}$
$∴△ADG≌△ADE(\mathrm {AAS}),$
$∴AG=AE.$
$∵CG-AC=AG,$
$∴BE-AC=AE.$