$解:(2)连接CD交OB于点M.$
$∵\widehat{BD}=\widehat{BC}$
$∴CM=MD,OB⊥CD$
$又∵OA=OD$
$∴OM为△ACD的中位线$
$∴OM=\frac 1 2AC=\frac 5 2$
$设⊙O的半径为r,则BM=r-\frac 5 2$
$∴在Rt△OMD和Rt△BMD中,由勾股定理,得$
${DM}^2={OD}^2-{OM}^2={BD}^2-{BM}^2$
$∵BD=BC=\sqrt {3}$
$∴{r}^2-{(\frac 5 2)}^2={(\sqrt {3})}^2-{(r-\frac 5 2)}^2$
$解得r=3(负值舍去)$
$∴AD=2r=6$
$∵AD是⊙O的直径$
$∴∠ACD=90°$
$∴在Rt△ACD中,sin∠ADC=\frac {AC}{AD}=\frac 5 6$
$∵\widehat{AC}=\widehat{AC}$
$∴∠CBA=∠ADC$
$∴sin∠CBA=\frac 5 6$