电子课本网 第84页

第84页

信息发布者:
$±2(x+1)或±2(x^{2}-1)$
$解:\frac{x^{2}}{x^{2}-9}=\frac{x^{2}(x-3)}{(x+3)(x-3)^{2}}$
$\frac{3}{6x-9-x^{2}}=-\frac{3(x+3)}{(x+3)(x-3)^{2}}$
$解:\frac{a^{2}-4}{a^{2}-4a+4}=\frac{(a-2)(a+2)}{(a-2)^{2}}=\frac{(a+2)^{2}}{(a+2)(a-2)}$
$\frac{4a}{a^{2}+2a}=\frac{4a}{a(a+2)}=\frac{4(a-2)}{(a+2)(a-2)}$
$解:\frac{x}{x-y}=\frac{x(x+y)^{2}}{(x+y)^{2}(x-y)}$
$\frac{y}{x^{2}+2xy+y^{2}}=\frac{(x-y)}{(x+y)^{2}(x-y)}$
$\frac{2}{y^{2}-x^{2}}=-\frac{2(x+y)}{(x+y)^{2}(x-y)}$
$解:a-b=\frac{(a-b)^{2}(a+b)}{a^{2}-b^{2}}$
$\frac{b}{a-b}=\frac{b(a+b)}{a^{2}-b^{2}}$
$\frac{1}{a^{2}-b^{2}}=\frac{1}{a^{2}-b^{2}}$
$\ 解:(1)\frac{a-1}{a+1}=\frac{(a-1)(b+1)}{(a+1)(b+1)}$
$\frac{b-1}{b+1}=\frac{(a+1)(b-1)}{(a+1)(b+1)}$
$(2)由(1)得\frac{a-1}{a+1}=\frac{(a-1)(b+1)}{(a+1)(b+1)}=\frac{ab+a-b-1}{ab+a+b+1}$
$由ab=3,a+b=4,得a-b=±2$
$∴\frac{a-1}{a+1}=\frac{1}{2}或0$


$解:(1)\frac{3x+1}{x-1}=\frac{3x-3+4}{x-1}=3+\frac{4}{x-1}$
$\frac{x^{2}+3}{x+2}=\frac{(x+2)(x-2)+7}{x+2}$
$=x-2+\frac {7}{x+2}$
$(2)\frac{2x^{2}-1}{x-1}=\frac{2x^{2}-2+1}{x-1}=\frac{2(x+1)(x-1)+1}{x-1}=2(x+1)+\frac{1}{x-1}$
$∵分式的 值为整数,x为整数$
$∴x-1=1或x-1=-1,解得x=2或x=0$
$∴当x=2或0时,分式\frac{2x^{2}-1}{x-1}的值为整数$