$ 解:原式=( \frac {1}{x+1} + \frac {1}{x²-1} ) \cdot \frac {x-1}{x}\ $
$= \frac {1}{x+1} \cdot \frac {x-1}{x} +\frac {1}{x²-1} \cdot \frac {x-1}{x}\ $
$= \frac {x-1}{x(x+1)} + \frac {1}{x(x+1)}\ $
$= \frac {x}{x(x+1)}\ $
$= \frac {1}{x+1}$
$当x=\sqrt {12} +( \sqrt {5} )^0-( \frac {1}{2} ) ^{-1}=2 \sqrt {3} +1-2=2 \sqrt {3} -1时,$
$原式=\frac {1}{2\sqrt {3}-1+1} =\frac {\sqrt {3}}{6}$