$解:(2)∵点P(t,y_{1})在线段AB上$
$∴y_{1}=-\frac 34t+3(0≤t≤2)$
$∵点Q(t-1,y_{2})在直线y=2x-\frac 52上$
$∴y_{2}=2(t-1)-\frac 52=2t-\frac 92$
$∴y_{1}-y_{2}=-\frac 34t+3-(2t-\frac 92)=-\frac {11}{4}t+\frac {15}{2}$
$∵-\frac {11}{4}<0$
$∴y_{1}-y_{2}=-\frac 34t+3-(2t-\frac 92)=-\frac {11}{4}t+\frac {15}{2}$
$∵-\frac {11}{4}<0$
$∴y_{1}-y_{2}随t的增大而减小$
$∴当t=0时,y_{1}-y_{2}有最大值,最大值为\frac {15}{2}$