$解:(1)∵△PQC的面积与四边形PABQ的面积相等$
$∴S_{△ABC}=2S_{△PQC}$
$∵PQ//AB$
$∴△ABC∽△PQC$
$∴\frac {CP}{AC}=\frac {\sqrt 2}2$
$∵AC=4$
$∴CP=2\sqrt 2$
$(2)∵△ABC∽△PQC$
$∴\frac {CP}{CQ}=\frac {AC}{BC}=\frac 43$
$设CP=4x,则CQ=3x,PA=4-4x,QB=3-3x$
$∵△PQC的周长与四边形PABQ的周长相等$
$∴CP+CQ=PA+QB+AB$
$∴4x+3x=(4-4x)+(3-3x)+5$
$解得x=\frac 67$
$∴CP=4x=\frac {24}{7}$(更多请点击查看作业精灵详解)