$解:过点C作CF⊥l,垂足为点F,$
$过D、B作CF的垂线,$
$垂足分别为点H、G$
$在Rt△BCG中,$
$∠CBG=148°-90°=58°$
$∵sin∠CBG=\frac {CG}{CB},$
$cos∠CBG=\frac {BG}{CB}且BC=30\ \mathrm {cm}$
$∴CG=25.5CM,BG=15.9\ \mathrm {cm}$
$又∵AE=9\ \mathrm {cm}$
$∴DH=AE+BG=24.9\ \mathrm {cm}$
$∵∠CBG=58°$
$∴∠BCG=32°$
$∴∠DCH=∠DCB+∠BCG=60°$
$在Rt△DCH中,∠DCH=60°$
$tan ∠DCH=\frac {DH}{CH}$
$∴CH=\frac {24.9}{\sqrt 3}≈14.4\ \mathrm {cm}$
$∴DE=CG+AB-CH=26.1\ \mathrm {cm}$