解 :$ (1) $因为$3^{44}=(3^4)^{11}=81^{11},$
$4^{33}=(4^3)^{11}=64^{11},$
$5^{22}=(5^2)^{11}=25^{11},$且$81>64>25,$
所以$81^{11}>64^{11}>25^{11},$即$3^{44}>4^{33}>5^{22};$
$ (2) $因为$81^{31}=(3^4)^{31}=3^{124},$
$27^{41}=(3^3)^{41}=3^{123},$
$9^{61}=(3^2)^{61}=3^{122},$且$124>123>122,$
所以$3^{124}>3^{123}>3^{122},$即$81^{31}>27^{41}>9^{61};$
$ (3) $因为$a^2=2,$$b^3=3,$
所以$a^6=(a^2)^3=8,$$b^6=(b^3)^2=9,$
因为$8<9,$且$a>0,$$b>0,$
所以$a < b;$
$ (4) $因为$3^{12}×5^{10}=3^{10}×3^2×5^{10},$
$3^{10}×5^{12}=3^{10}×5^{10}×5^2,$且$3^2<5^2,$
所以$3^{12}×5^{10}<3^{10}×5^{12}。$