电子课本网 第10页

第10页

信息发布者:
1
=
=
解:​$(2)$​因为​$(\frac {5}{4})^3=\frac {5}{4}×\frac {5}{4}×\frac {5}{4}=\frac {125}{64},$​
​$(\frac {4}{5})^{-3}=\frac {1}{(\frac {4}{5})^3}=\frac {1}{\frac {4}{5}×\frac {4}{5}×\frac {4}{5}}=\frac {5}{4}×\frac {5}{4}×\frac {5}{4}=\frac {125}{64},$​
所以​$(\frac {5}{4})^3=(\frac {4}{5})^{-3}。$​
​$(4)①(\frac {3}{8})^{-4}=(\frac {8}{3})^4,$​
所以原式​$=(\frac {8}{3})^4×(\frac {3}{4})^4=(\frac {8}{3}×\frac {3}{4})^4=2^4=16;$​
​$ ②(-\frac {1}{2})^{-3}×2^{-4}-4^{-2}×(-0.25)^{-3}$​
​$=(-2)^3×(\frac {1}{2})^4-(\frac {1}{4})^2×(-4)^3$​
​$ =[(-2)×\frac {1}{2}]^3×\frac {1}{2}-[\frac {1}{4}×(-4)]^2×(-4)$​
​$ =-\frac {1}{2}-(-4)$​
​$ =-\frac {1}{2}+4$​
​$ =3\frac {1}{2}$​
解:​$①$​当​$2x + 3 = 1$​时,解得​$x = -1,$​
此时​$x + 2024 = 2023,$​
则​$(2x + 3)^{x + 2024}=1^{2023}=1,$​
所以​$x = -1;$​
​$ ②$​当​$2x + 3 = -1$​时,解得​$x = -2,$​
此时​$x + 2024 = 2022,$​
则​$(2x + 3)^{x + 2024}=(-1)^{2022}=1,$​
所以​$x = -2;$​
​$ ③$​当​$x + 2024 = 0$​时,​$x = -2024,$
​此时​$2x + 3 = -4045,$
​则​$(2x + 3)^{x + 2024}=(-4045)^0=1,$​
所以​$x = -2024。$​
综上所述,当​$x = -1$​或​$x = -2$​或​$x = -2024$​时,
代数式​$(2x + 3)^{x + 2024}$​的值为​$1。$​
解:设​$S = 1 + 3^{-1} + 3^{-2} + … + 3^{-1000},$​
​$ $​所以​$3S = 3×(1 + 3^{-1} + 3^{-2} +…+ 3^{-1000}) $​
​$= 3 + 1 + 3^{-1} + 3^{-2} +… + 3^{-999},$​
​$ $​所以​$2S=(3 + 1 + 3^{-1} + 3^{-2} + … + 3^{-999})-$​
​$(1 + 3^{-1} + 3^{-2} + … + 3^{-1000}) $​
​$= 3 - 3^{-1000},$​
​$ $​所以​$S=\frac {3 - 3^{-1000}}{2}。$​

$1 - 2^{-n}$