电子课本网 第137页

第137页

信息发布者:
解:(1)
因为在矩形$CEFD$中,$CD// EF,$所以$\angle CD'E = \angle DCD'=\alpha。$
取$CD'$的中点$H,$连接$EH。$
因为在矩形$CEFD$中,$\angle DCE=\angle FEC = 90^{\circ},$所以$EH = CH=\frac{1}{2}CD' = 1。$
又因为$CE = 1,$所以$CE = EH = CH = 1,$$\triangle CEH$为等边三角形。
所以$\angle D'CE = 60^{\circ},$则$\alpha = 90^{\circ}-60^{\circ}=30^{\circ}。$
(2)
由旋转,得$CD' = CD,$$CE' = CE = 1。$
因为$G$为$BC$的中点,所以$CG = BG=\frac{1}{2}BC = 1,$所以$CG = CE'。$
在正方形$ABCD$中,$\angle DCG = 90^{\circ},$在矩形$CE'F'D'$中,$\angle D'CE' = 90^{\circ},$
所以$\angle D'CG=\angle DCG+\angle DCD' = 90^{\circ}+\alpha,$$\angle DCE'=\angle D'CE'+\angle DCD' = 90^{\circ}+\alpha,$
所以$\angle D'CG = \angle DCE'。$
又因为$CD' = CD,$所以$\triangle GCD'\cong\triangle E'CD,$所以$GD' = E'D。$
(3)能,$\alpha = 135^{\circ}$或$315^{\circ}。$
解:(1)
由旋转的性质,得$DM = DE,$$\angle MDE = 2\alpha,$因为$\angle C=\alpha,$
所以$\angle DEC=\angle MDE - \angle C=\alpha,$所以$\angle C=\angle DEC,$所以$DE = DC。$
所以$DM = DC,$即$D$是$MC$的中点。
(2)
如图,延长$FE$到点$H,$使$EH = FE,$连接$CH,$$AH,$$AF。$
因为$DF = DC,$所以$DE$是$\triangle FCH$的中位线,所以$DE// CH,$$CH = 2DE。$
由旋转的性质,得$DM = DE,$$\angle MDE = 2\alpha,$所以$\angle FCH = 2\alpha。$
因为$\angle B=\angle BCA=\alpha,$所以$\angle ACH=\alpha,$$\triangle ABC$是等腰三角形,所以$\angle B=\angle ACH,$$AB = AC。$
设$DM = DE = m,$$CD = n,$则$CH = 2m,$$CM = m + n,$$DF = CD = n,$
所以$FM = DF - DM = n - m。$
因为$AM\perp BC,$所以$BM = CM = m + n,$所以$BF = BM - FM = m + n-(n - m)=2m。$
所以$CH = BF。$
在$\triangle ABF$和$\triangle ACH$中,$\begin{cases}AB = AC\\\angle B=\angle ACH\\BF = CH\end{cases},$
所以$\triangle ABF\cong\triangle ACH,$所以$AF = AH。$
因为$FE = EH,$所以$AE\perp FH,$即$\angle AEF = 90^{\circ}。$