解:(1)
由旋转的性质,得$DM = DE,$$\angle MDE = 2\alpha,$因为$\angle C=\alpha,$
所以$\angle DEC=\angle MDE - \angle C=\alpha,$所以$\angle C=\angle DEC,$所以$DE = DC。$
所以$DM = DC,$即$D$是$MC$的中点。
(2)
如图,延长$FE$到点$H,$使$EH = FE,$连接$CH,$$AH,$$AF。$
因为$DF = DC,$所以$DE$是$\triangle FCH$的中位线,所以$DE// CH,$$CH = 2DE。$
由旋转的性质,得$DM = DE,$$\angle MDE = 2\alpha,$所以$\angle FCH = 2\alpha。$
因为$\angle B=\angle BCA=\alpha,$所以$\angle ACH=\alpha,$$\triangle ABC$是等腰三角形,所以$\angle B=\angle ACH,$$AB = AC。$
设$DM = DE = m,$$CD = n,$则$CH = 2m,$$CM = m + n,$$DF = CD = n,$
所以$FM = DF - DM = n - m。$
因为$AM\perp BC,$所以$BM = CM = m + n,$所以$BF = BM - FM = m + n-(n - m)=2m。$
所以$CH = BF。$
在$\triangle ABF$和$\triangle ACH$中,$\begin{cases}AB = AC\\\angle B=\angle ACH\\BF = CH\end{cases},$
所以$\triangle ABF\cong\triangle ACH,$所以$AF = AH。$
因为$FE = EH,$所以$AE\perp FH,$即$\angle AEF = 90^{\circ}。$