电子课本网 第108页

第108页

信息发布者:
12
15
5
D
4.5
40
(1)解:由图甲可知,滑片在最左端时,只有热敏电阻接入电路,由图乙可知,温度为$10\ ^{\circ}\text{C}$时,热敏电阻阻值为$400\ \Omega,$根据$U = IR$可得,电源电压$U = IR_{1}=0.03\ \text{A}\times400\ \Omega = 12\ \text{V}。$
(2)解:由图乙可知,温度为$30\ ^{\circ}\text{C}$时,热敏电阻阻值为$200\ \Omega,$由题意知电路最大电流为$0.05\ \text{A},$根据$R=\frac{U}{I}$可得,电路的最小总电阻$R_{总\min}=\frac{U}{I_{\max}}=\frac{12\ \text{V}}{0.05\ \text{A}} = 240\ \Omega,$则滑动变阻器的最小阻值$R_{\min}=R_{总\min}-R_{1}' = 240\ \Omega - 200\ \Omega = 40\ \Omega;$由题意知电压表允许测量的最大电压为$9\ \text{V},$即滑动变阻器两端的最大电压为$9\ \text{V},$则热敏电阻两端的最小电压$U_{1\min}=U - U_{R\max}=12\ \text{V}-9\ \text{V}=3\ \text{V},$电路的最小电流$I_{\min}=\frac{U_{1\min}}{R_{1}'}=\frac{3\ \text{V}}{200\ \Omega}=0.015\ \text{A},$则滑动变阻器的最大阻值$R_{\max}=\frac{U_{R\max}}{I_{\min}}=\frac{9\ \text{V}}{0.015\ \text{A}} = 600\ \Omega。$所以,滑动变阻器可以调节的范围是$40~600\ \Omega。$
(3)解:由题意可知,在滑动变阻器接入电路阻值一定的情况下,温度越高,$R_{1}$阻值越小,电路总电阻越小,则电路中电流越大,同时变阻器两端的电压也越大。在保证两电表安全工作的前提下,电路的最大电流为$0.05\ \text{A},$电压表最大示数为$9\ \text{V},$此时滑动变阻器接入电路的最大阻值$R=\frac{U_{R}}{I_{\max}}=\frac{9\ \text{V}}{0.05\ \text{A}} = 180\ \Omega<600\ \Omega,$则热敏电阻的最小阻值$R_{1\min}=\frac{U_{1\min}}{I_{\max}}=\frac{3\ \text{V}}{0.05\ \text{A}} = 60\ \Omega,$由图乙知温度每升高$10\ ^{\circ}\text{C},$热敏电阻阻值减小$100\ \Omega,$温度为$40\ ^{\circ}\text{C}$时其阻值为$100\ \Omega,$则热敏电阻为$60\ \Omega$时的环境温度$t = 40\ ^{\circ}\text{C}+\frac{100\ \Omega - 60\ \Omega}{100\ \Omega}\times10\ ^{\circ}\text{C}=44\ ^{\circ}\text{C},$所以该装置能监测的最高温度为$44\ ^{\circ}\text{C}。$