电子课本网 第17页

第17页

信息发布者:
(1,4)
(2,4)
$y=-x²+2x+3$
$y=\frac {3}{16}(x-4\sqrt{2})²或y=\frac {3}{16}(x+4\sqrt{2})²$
$ 解:(1)因为y=\frac {3}{4}x+6$
$ 所以A(-8,0),B(0,6)$
$ 设C(m,\frac {3}{4}m+6)$
$ 所以抛物线M可表示为y=a(x-m)²+\frac {3}{4}m+6$
$ 因为抛物线M经过点B$
$ 所以am²+\frac {3}{4}m+6=6且m≠0$
$ 所以am=-\frac {3}{4}$
$ 即m=-\frac {3}{4a}$
$ 将m=-\frac {3}{4a}代入y=a(x-m)²+\frac {3}{4}m+6$
$ 所以y=ax²+\frac {3}{2}x+6$
$ 所以b=\frac {3}{2},c=6.$

6
$解:(1)把C(0,-3)代入y={(x-1)}^{2}+k,得$
$k=-4$
$∴此抛物线对应的函数表达式为y={(x-1)}^{2}-4,即y={x}^{2}-2x-3$
$(2)在y={x}^{2}-2x-3中,令y=0,则x=-1或x=3$
$∴A(-1,0),B(3,0)$
$∴AB=4$
$∵P为抛物线上一点,横坐标为m$
$∴点P的坐标为(m,{m}^{2}-2m-3),0<m<3$
$∴S_{△ABP}=\frac 1 2AB·(-y_p)=\frac 1 2×4×[-({m}^{2}-2m-3)]=-2{m}^{2}+4m+6=-2{(m-1)}^{2}+8,0<m<3$
$∴当m=1时,S_{△ABP}取得最大值,最大值为8$
$(3)由y={(x-1)}^{2}-4,得抛物线的顶点坐标为(1,-4)$
$①当0<m\leqslant 1时,h=-3-({m}^{2}-2m-3)=-{m}^{2}+2m;$
$当1<m\leqslant 2时,h=-3-(-4)=1;$
$当m>2时,h={m}^{2}-2m-3-(-4)={m}^{2}-2m+1$
$综上所述,h={{\begin{cases} {{-{m}^{2}+2m(0<m\leqslant 1)}} \\ {1(1<m\leqslant 2)}\\ {{m}^{2}-2m+1(m>2)} \end{cases}}}$