电子课本网 第71页

第71页

信息发布者:
$ 证明:(1) 因为AC=AB,$
$ 所以∠C=∠B. $
$ 因为CF= BE,$
$ 所以CF- EF=BE-EF,$
$ 即CE=BF.$
$ 在△ACE和△ABF 中,$
$ \begin{cases}AC=AB,\\∠C=∠B \\CE=BF,\end{cases}$
$ ∴ △ACE≌△ABF. $
$ ∴ ∠CAE=∠BAF$
$ (2) ∵ △ACE≌△ABF, $
$ ∴ AE=AF,∠CAE=∠BAF.$
$ ∵ AE²=AQ×AB,AC=AB, $
$ ∴ \frac {AE}{AQ} = \frac {AC}{AF} .$
$ 又 ∵ ∠CAE=∠FAQ $
$ ∴ △ACE∽△AFQ$
$ ∴ ∠AEC=∠AQF $
$ ∴ ∠AEF=∠BQF. $
$ ∵ AE=AF, $
$ ∴ ∠AEF=∠AFE. $
$ ∴ ∠AFE=∠BQF.$
$ 又 ∵ ∠C=∠B, $
$ ∴ △CAF∽△BFQ; $
$ ∴ \frac {CF}{BQ} = \frac {AF}{FQ} ,$
$ ∴CF×FQ=AF×BQ.$

$证明:(1)∵AB是圆O的直径, $
$∴ ∠ACB=90°. $
$∵ BE⊥CD,$
$∴ ∠DEB=90°=∠ACB.$
$∵\widehat{BC}=\widehat{BC}$
$∴ ∠D=∠A,$
$∴ △DBE∽△ABC.$
$(2) 过点C作CG⊥AB,垂足为G.$
$∵ ∠ACB=90°,AC= \sqrt{5}\ \mathrm {BC}=2 \sqrt{5} , $
$∴ AB= \sqrt{AC²+BC²} =5. $
$∵ CG⊥AB, $
$∴ ∠AGC=90°, $
$∴ ∠ACB=∠AGC. $
$∵ ∠A=∠A, $
$∴ △ACB∽△AGC, $
$∴ \frac {AC}{AG} = \frac {AB}{AC} , $
$∴ AG= \frac {AC²}{AB} =\frac {(\sqrt{5})²}{5} =1. $
$∵ AF=2, $
$∴ FG=AG=1, $
$∴ AC=CF, $
$∴ ∠A=∠CFA. $
$∵ ∠CFA=∠BFD,∠A=∠D, $
$∴ ∠BFD=∠D,$
$∴ BD=BF=AB-AF=5-2=3. $
$∵ △DBE∽△ABC.$
$ \frac {BD}{BA}= \frac {DE}{AC} $
$ \frac {3}{5} =\frac {DE}{\sqrt{5}} $
$∴ED=\frac {3\sqrt{5}}{5}$

(4,6)
A