电子课本网 第49页

第49页

信息发布者:
​​$解:相似,理由如下:$​​
​​$因为AB=2 , BC=4,AC=3 , $​​
​​$A'B'=3 , B'C'=6 , A'C'=4.5 .$​​
​​$所以\frac {AB}{A'B'}=\frac {BC}{B'C'}=\frac {AC}{A'C'}=\frac {2}{3}$​​
​​$所以△ABC∽△A'B'C'$​​
​​$解:相似,理由如下:$​​
​​$由图可知,A_{1}B_{1}=\sqrt{2²+2²}= 2\sqrt{2},$​​
​​$A_{2}B_{2}=\sqrt{1²+1²}=\sqrt{2},$​​
​​$ A_{1}C_{1}=4, A_{2}C_{2}= 2,$​​
​​$B_{1}C_{1}=\sqrt{2²+6²}=2\sqrt{10}$​​
​​$B_{2}C_{2}=\sqrt{1²+3²}=\sqrt{10}$​​
​​$因为\frac {A_{1}B_{1}}{A_{2}B_{2}}=\frac {A_{1}C_{1}}{A_{2}C_{2}}=\frac {B_{1}C_{1}}{B_{2}C_{2}}$​​
​​$所以△A_{1}B_{1}C_{1}∽△A_{2}B_{2}C_{2}$​

​​$\frac {25}{12}\ \mathrm {cm}$​​
2
15
18