$解:相似,理由如下:$
$由图可知,A_{1}B_{1}=\sqrt{2²+2²}= 2\sqrt{2},$
$A_{2}B_{2}=\sqrt{1²+1²}=\sqrt{2},$
$ A_{1}C_{1}=4, A_{2}C_{2}= 2,$
$B_{1}C_{1}=\sqrt{2²+6²}=2\sqrt{10}$
$B_{2}C_{2}=\sqrt{1²+3²}=\sqrt{10}$
$因为\frac {A_{1}B_{1}}{A_{2}B_{2}}=\frac {A_{1}C_{1}}{A_{2}C_{2}}=\frac {B_{1}C_{1}}{B_{2}C_{2}}$
$所以△A_{1}B_{1}C_{1}∽△A_{2}B_{2}C_{2}$